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You never change things by
fighting the existing reality. To
change something, build a new
model that makes the existing
model obsolete.

Buckminster Fuller

Pluralitas non est ponenda sine
necessitate.

John Duns Scotus

1 Preamble

Based on what we have seen so far, it is clear that there is no single formula or approach
that will lead us directly from our observed data to the “correct” model to understand
them. The process of model building involves both conceptual and empirical considerations,
and represents an area of fairly rapid development. The guidelines presented here represent
an overview of some of the most commonly applied approaches to model building in
multivariable biostatistics, along with some examples of emerging methods.

2 Bias-Variance Tradeoff

All statistical methods are designed to optimize parameter estimates within a specific
observed data set, ideally with some bounds around those estimates to represent the range
of our uncertainty about those estimates. We recognize, however, that any observed data
set represents just one possible outcome. This introduces a disconnection between the
estimation process (made within our specific sample) and the generalization we wish to
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make (i.e., out of sample). What this means in practice is that estimates made within our
sample always favor more complex models. We can always improve prediction within
sample by adding more variables. At the same time, models that are overly complex are less
likely to replicate and generalize outside of our estimation sample.220 7. Model Assessment and Selection
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FIGURE 7.1. Behavior of test sample and training sample error as the model
complexity is varied. The light blue curves show the training error err, while the
light red curves show the conditional test error ErrT for 100 training sets of size
50 each, as the model complexity is increased. The solid curves show the expected
test error Err and the expected training error E[err].

Test error, also referred to as generalization error, is the prediction error
over an independent test sample

ErrT = E[L(Y, f̂(X))|T ] (7.2)

where both X and Y are drawn randomly from their joint distribution
(population). Here the training set T is fixed, and test error refers to the
error for this specific training set. A related quantity is the expected pre-
diction error (or expected test error)

Err = E[L(Y, f̂(X))] = E[ErrT ]. (7.3)

Note that this expectation averages over everything that is random, includ-
ing the randomness in the training set that produced f̂ .

Figure 7.1 shows the prediction error (light red curves) ErrT for 100
simulated training sets each of size 50. The lasso (Section 3.4.2) was used
to produce the sequence of fits. The solid red curve is the average, and
hence an estimate of Err.

Estimation of ErrT will be our goal, although we will see that Err is
more amenable to statistical analysis, and most methods effectively esti-
mate the expected error. It does not seem possible to estimate conditional

3 Theoretical Approaches to Model Building

No amount of statistical wizardry can substitute from careful thought and domain
knowledge in the model building process. In some disciplines, the empirical approaches to
model building described in the next section are widely discouraged, with only
theoretically-derived approaches being seen as acceptable.

3.1 Hierarchical Regression

Not to be confused with hierarchical linear models, hierarchical model building in mlutiple
linear regression refers to the process of adding variables to a model in conceptually distinct
blocks. For example, a baseline model might include the predictor of interest (POI) and a
number of background or demographic characteristics. To this, various blocks of potentially
“explanatory” variables might be added to the model, such as relating to socioeconomic
resources, comorbid conditions, or health care characteristics. The aim of such models is to
understand how the coefficient associated with the POI changes as a function of what other
variables are included in the model. One common aim is to “explain away” a significant
coefficient.

In hierarchical regression, what is tested is the change in R2 (i.e., ∆R2). The change in R2

is evaluated using a partial F-test
(SSReg(Full)− SSReg(Reduced)) /(∆dfNumerator)

MSResid(Full)
. A

significant change in R2 tells you that addition of that block of variables significantly
increases (within-sample) prediction of the response variable. These tests can be obtained in
Stata using the nestreg command, i.e., nestreg: regress y (x1 x2 x3) (x4 x5)

(x6-x10).
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4 Empirical Approaches to Model Building

A number of empirical approaches to model building are widely used in biostatistics. These
include best subset regression and a number of stepwise methods.

4.1 Best Subset

Best subset regression is a brute-force method for model building and comparison. Starting
from a set of k potential predictor variables, the best subset approach to model building
estimates all possible models containing between 0 and k predictors, i.e., all variables
individually, all pairs of variables, . . . , all k variables together. For each number of
predictors, the “best” model is recorded. Once all possible sets of variables has been
estimated, the overall best performing model is returned.

Best subsets regression requires that the statistic used for evaluation includes some kind of
penalty or adjustment for model parsimony (i.e., AdjR2 instead of R2. Also, k must be a
small set of variables or else the set of all potential models quickly becomes too large to
estimate even on extremely fast computers. Best subset regression with k = 30 requires
estimation of more than 1 billion models, for example, with every 10 variables adding
roughly 3 orders of magnitude to the number of models that must be estimated.

In Stata, the easiest way to estimate best subsets regression models is via the tryem

command that can be installed via findit tryem.

4.2 Stepwise Methods

Stepwise methods address the process of selectively adding and removing variables from a
model according to some criterion. Forward Selection, for example, begins with a baseline
(e.g., intercept only) model and adds variables, one at a time, as long as they enter the
model with a p-value at or below some specified threshold (e.g., p < .05). While this
guarantees that all variables will have a significant p-value when they are added, it does not
provide any guarantee that the variable will remain significant as more covariates are added
to the model. In Stata, forward stepwise is indicated by setting a probability for a variable
to enter the model (e.g., sw, pe(.05): reg y x1-x10).

A second stepwise approach is Backward Elimination. This approach begins with all
variables entered into the model and systematically removes them, one at a time, as long as
their p-value is above some threshold (e.g., p > .05). As with forward selection, this in no
way guarantees that the predictor removed would not have been statistically significant in a
model with a different subset of covariates; only that all variables remaining in the model
are significant at some criterion. Because this model automatically adjusts for all other
covariates included in the model, it is often preferred in biostatistics. In Stata, backward
elimination is indicated by setting a probability for a variable to be removed the model (e.g.,
sw, pr(.05): reg y x1-x10).
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Bridging these two methods, a Hybrid model can, at each step, decide whether is is better
to remove an existing variable from a model or to add in a variable that is currently
excluded from the model. In this way, variables can enter or exit the model at various
points during the estimation process. There is still no guarantee, however, that the final
selected model will be best overall. In Stata, this hybrid approach can be obtained by
specifying both a probability to enter and a (larger) probability to remove a variable (e.g.,
sw, pe(.05) pr(.1): reg y x1-x10).

One problem with each of these approaches is that p-values for model coefficients are no
longer statistically valid, since the same parameters are often estimated multiple times.
There is no current consensus on how to adjust for this fact, however, and so the issue is
most often ignored.

When each of these approaches is applied to a real data situation, a subset of covariates is
typically “forced” to be included. In this way, all models can adjust for a specific set of
variables, regardless of their level of statistical significance. To force a set of variables to be
included using Stata, the lockterm1 syntax is used (e.g., sw, lockterm1 pr(.10): reg

y (x1 x2) x3-x10 would require variables x1 and x2 to be included in all models). This is
useful when estimates should always adjust for certain key covariates and represents a link
between theoretical and empirical approaches to model building.

4.3 Shrinkage Methods

In recent years, there has been growing interest in so-called “shrinkage” methods that
shrink model coefficients toward 0 by imposing an additional penalty on their magnitude.
Ridge regression shrinks coefficients toward 0, and lasso regression shrinks some coefficients
to exactly 0 (i.e., they are excluded from the model). In both cases, the extent of shrinkage
is controlled through an additional parameter, λ, the shrinkage parameter.

For ridge regression, ˆbeta is defined as the value of β minimizing
N∑
i

(yi − xTi β)2 + λ
p∑

j=1

β2.

Ridge regression can be estimated in Stata using the ridgereg command.

Lasso regression uses a slightly different penalty. Specifically, ˆbeta is defined as the value of

β minimizing
N∑
i

(yi − xTi β)2 + λ
p∑

j=1

|β|. Lasso regression can be estimated in Stata using the

lars command.

5 Cross-Validation

In an ideal world, we would have enough data to independently develop, test, and validate
our models. In reality, this is almost never the case. Instead, it is becoming more common
to divide a data set into distinct parts in order to approximate this process under practical
conditions. k-fold cross-validation involves dividing data into k approximately equal parts.
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One fold is excluded at a time, and the model is estimated using the remaining k − 1 folds.
The model is evaluated using the excluded fold. The next fold is excluded, and the process
is repeated until each fold has been used for independent evaluation of a model. Since the
portion of the data used to estimate the model is independent of the portion of the data
used to evaluate it, this reduces some of the capitalization on chance that would affect
model results if a model were estimated and evaluated on the entire data set. However, each
successful estimate overlaps on k− 2 folds, so the modeling stages are not truly independent.
Many times, this process is repeated for a large number of random folds (i.e., 5-fold
cross-validation might be repeated using 100 different random partitions of the data into 5
folds). Ideally, a portion of the data set is also excluded from all of these considerations. It
is used only at the end in order to validate the model using a truly independent data set
(which is used only once with the final model). In Stata, cross-validation can be estimated
using the crossfold command. Jackknife Replication is equivalent to k-fold cross
validation where k = N − 1. That is, each observation is excluded one at a time.
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Stata Syntax: Model Building and Variable Selection

/*****************************************************************

* Model Building and Variable Selection

* PH 8012, Spring 2015

* Adam Davey

* Requires tryem

* Type: findit tryem to install

*****************************************************************/

#delimit;

clear all;

capture log close;

log using "mymodel.log", replace;

*log using "mymodel.smcl", replace;

* Below simulates some data for the workflow;

set seed 31159;

set obs 1000;

local numx = 10;

local numxr = 5;

local evar = 5;

local maxk = 5;

forvalues i=1/‘numx’ {;

generate x_‘i’ = rnormal();

};

gen y = 0;

forvalues i= 1/‘numxr’ {;

replace y = y + x_‘i’;

};

replace y = y + rnormal(0,‘evar’);

forvalues k=1/‘maxk’ {;

*tryem y x*, k(‘k’) cmd(reg) best(max) stat(r2_a);

tryem y x*, k(‘k’) cmd(reg) best(min) stat(rmse);

};

sw, pe(.1): reg y x*;

sw, pr(.1): reg y x*;

sw, pe(.10) pr(.100001): reg y x*;

gen order = .;
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gen yhat = .;

gen fold = .;

local reps = 2;

local nfolds = 5;

quietly {;

timer on 1;

forvalues r = 1/‘reps’ {;

replace order = runiform();

sort order;

replace fold = mod(_n,‘nfolds’) + 1;

forvalues i=1/‘numx’ {;

forvalues k = 1/‘nfolds’ {;

tryem y x* if fold!=‘k’, k(‘i’) best(min) stat(rmse);

predict e, resid;

replace e = sqrt(e^2);

summ e if fold!=‘k’, meanonly;

local insamp = r(mean);

summ e if fold==‘k’, meanonly;

local outsamp = r(mean);

*noisily: di "i = " %2.0f ‘i’ ", fold = " %2.0f ‘k’ ", RMSE = " %6.4f r(mean);

mat results = (nullmat(results) \ ‘i’, ‘k’, ‘insamp’, ‘outsamp’);

drop e;

};

};

};

timer off 1;

svmat results;

ren results1 i;

ren results2 k;

ren results3 insamp;

ren results4 outsamp;

noisily: di "Results based on ‘reps’ replcations";

noisily: tabstat insamp outsamp, by(i) statistics(mean) longstub nototal;

noisily: timer list 1;

by i, sort: egen insample = mean(insamp);

by i, sort: egen outsample = mean(outsamp);

twoway (line insample i, sort lwidth(thick)) (line outsample i, sort lwidth(thick)),

ytitle(RMSE) xtitle(Number of Predictors) legend(on position(1) ring(0));

};

crossfold reg y x*, k(10) mae;

lars y x*, algorithm(lasso) graph;
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